

 public_key

 v1.16

 [image: Logo]

 Table of contents

 	Public_Key Application

 	Public_Key Release Notes

 	User's Guides

 	Public-Key Records

 	Examples

 	

 	Modules

 	public_key

Public_Key Application

The Public Key application deals with public-key related file formats,
digital signatures, and X-509
certificates. It handles
validation of certificate paths and certificate revocation lists
(CRLs) and other functions for handling of certificates, keys and
CRLs. It is a library application that does not read or write files,
it expects or returns file contents or partial file contents as
binaries. Except for the functions public-key:cacerts_load/0,
public-key:cacerts_load/1, and public-key:cacerts_get/0
that reads files.

 Supported PKIX functionality

	Supports RFC 5280 - Internet X.509
Public-Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. Certificate policies supported since OTP-26.2
	Supports PKCS-1 - RSA Cryptography
Standard
	Supports
DSS -
Digital Signature Standard (DSA - Digital Signature Algorithm)
	Supports
PKCS-3 -
Diffie-Hellman Key Agreement Standard
	Supports PKCS-5 - Password-Based
Cryptography Standard
	Supports AES - Use of the Advanced
Encryption Standard (AES) Algorithm in Cryptographic Message Syntax (CMS)
	Supports PKCS-8 - Private-Key
Information Syntax Standard
	Supports PKCS-10 - Certification
Request Syntax Standard

 Dependencies

The public_key application uses the Crypto application to perform
cryptographic operations and the ASN-1 application to handle PKIX-ASN-1
specifications, hence these applications must be loaded for the public_key
application to work. In an embedded environment this means they must be started
with application:start/[1,2] before the public_key application is started.

 Error Logger and Event Handlers

The public_key application is a library application and does not use the error
logger. The functions will either succeed or fail with a runtime error.

 See Also

application

Public_Key Release Notes

 Public_Key 1.16

 Improvements and New Features

	The ssl client can negotiate and handle certificate status request (OCSP stapling support on the client side).
Thanks to voltone for interop testing and related discussions.
Own Id: OTP-18606 Aux Id: OTP-16875,OTP-16448

	The exception reason when public_key:cacerts_get/0 failed has been improved.
Own Id: OTP-18609 Aux Id: GH-7295, PR-7302

	Key customization support has been extended to allow flexibility for implementers of for instance hardware security modules (HSM) or trusted platform modules (TPM).
Own Id: OTP-18876 Aux Id: PR-7898, PR-7475

	The documentation has been migrated to use Markdown and ExDoc.
Own Id: OTP-18955 Aux Id: PR-8026

	The existing function ssl:key_exporter_materials/4 is now documented and supported.
 POTENTIAL INCOMPATIBILITY
Own Id: OTP-19016 Aux Id: PR-8233

	Due to another attack on PKCS #1 v1.5 padding, known as the Marvin attack, about which we were alerted by Hubert Kario from Red Hat. You can find more details about the attack at
https://people.redhat.com/~hkario/marvin/
Functions that may be vulnerable are now deprecated.
Note that you might mitigate the problem
by using appropriate versions of OpenSSL together with our software, but we recommend not using them at all.
Also avoid using TLS versions prior to TLS-1.2 (not supported by default) and
do not enable RSA-key exchange cipher suites (not supported by default).
 POTENTIAL INCOMPATIBILITY
Own Id: OTP-19075

 Public_Key 1.15.1

 Fixed Bugs and Malfunctions

	Hostname prefix with X number of dots should not be accepted.
Own Id: OTP-18935 Aux Id: GH-8021

 Public_Key 1.15

 Fixed Bugs and Malfunctions

	ssl application will validate id-kp-serverAuth and id-kp-clientAuth extended
key usage only in end entity certificates. public_key application will
disallow "anyExtendedKeyUsage" for CA certificates that includes the extended
key usage extension and marks it critical.
Own Id: OTP-18739

	Modernize ECC handling so that crypto FIPS support works as expected.
Own Id: OTP-18854

 Improvements and New Features

	Support certificate policies in path_validation - as described by RFC 5280.
Own Id: OTP-17844 Aux Id: ERIERL-738

	Add more search paths for cacerts on Illumos.
Own Id: OTP-18814 Aux Id: PR-7435

	Make it possible to handle invalid date formats in the verify_fun for
pkix_path_validation/3
Own Id: OTP-18867 Aux Id: GH-7515

 Public_Key 1.14.1

 Fixed Bugs and Malfunctions

	Country name comparison shall be case insensitive
Own Id: OTP-18718 Aux Id: GH-7546

	Add check to disallow duplicate certs in a path
Own Id: OTP-18723 Aux Id: GH-6394

 Public_Key 1.14

 Improvements and New Features

	Handling of on_load modules during boot has been improved by adding an extra
step in the boot order for embedded mode that runs all on_load handlers,
instead of relying on explicit invocation of them, later, when the kernel
supervision tree starts.
This is mostly a code improvement and OTP internal simplification to avoid
future bugs and to simplify code maintenance.
Own Id: OTP-18447

 Public_Key 1.13.3.2

 Fixed Bugs and Malfunctions

	ssl application will validate id-kp-serverAuth and id-kp-clientAuth extended
key usage only in end entity certificates. public_key application will
disallow "anyExtendedKeyUsage" for CA certificates that includes the extended
key usage extension and marks it critical.
Own Id: OTP-18739

 Public_Key 1.13.3.1

 Fixed Bugs and Malfunctions

	Country name comparison shall be case insensitive
Own Id: OTP-18718 Aux Id: GH-7546

 Public_Key 1.13.3

 Fixed Bugs and Malfunctions

	As different solutions of verifying certificate revocation exists move the
decode of 'CRLDistributionPoints' so that it will only be decode. When it is
actually used in the verification process. This would enable interoperability
with systems that use certificates with an invalid empty CRLDistributionPoints
extension that they want to ignore and make verification by other means.
Own Id: OTP-18316 Aux Id: GH-6402, PR-6883

	public_key:pkix_path_validation validates certificates expiring after 2050
Own Id: OTP-18356 Aux Id: GH-6403

	Do not leave exit message in message queue after calling cacerts_load() on
MacOS.
Own Id: OTP-18392 Aux Id: GH-6656

 Improvements and New Features

	Replace size/1 with either tuple_size/1 or byte_size/1
The size/1 BIF is not optimized by the JIT, and its use can
result in worse types for Dialyzer.
When one knows that the value being tested must be a tuple,
tuple_size/1 should always be preferred.
When one knows that the value being tested must be a binary,
byte_size/1 should be preferred. However,
byte_size/1 also accepts a bitstring (rounding up size to a
whole number of bytes), so one must make sure that the call to byte_size/ is
preceded by a call to is_binary/1 to ensure that bitstrings
are rejected. Note that the compiler removes redundant calls to
is_binary/1, so if one is not sure whether previous code
had made sure that the argument is a binary, it does not harm to add an
is_binary/1 test immediately before the call to
byte_size/1.
Own Id: OTP-18432 Aux Id:
GH-6672,PR-6793,PR-6784,PR-6787,PR-6785,PR-6682,PR-6800,PR-6797,PR-6798,PR-6799,PR-6796,PR-6813,PR-6671,PR-6673,PR-6684,PR-6694,GH-6677,PR-6696,PR-6670,PR-6674

 Public_Key 1.13.2

 Fixed Bugs and Malfunctions

	Disregard LDAP URIs when HTTP URIs are expected.
Own Id: OTP-18333 Aux Id: GH-6363

 Public_Key 1.13.1

 Fixed Bugs and Malfunctions

	Support more Linux distributions in cacerts_load/0.
Own Id: OTP-18154 Aux Id: PR-6002

	Correct asn1 typenames available in type pki_asn1_type()
Own Id: OTP-18189 Aux Id: ERIERL-829

	Sign/verify does now behave as in OTP-24 and earlier for eddsa.
Own Id: OTP-18205 Aux Id: GH-6219

 Public_Key 1.13

 Improvements and New Features

	Added functions to retrieve OS provided CA-certs.
Own Id: OTP-17798 Aux Id: GH-5760

	Allow key file passwords to be input as a single binary, that is we change the
data type to be the more for the purpose logical data type iodata() instead of
string().
Own Id: OTP-17890

	The deprecated public_key functions ssh_decode/2, ssh_encode/2,
ssh_hostkey_fingerprint/1 and ssh_hostkey_fingerprint/2 are removed.
They are replaced by ssh_file:decode/2, ssh_file:encode/2,
ssh:hostkey_fingerprint/1 and ssh:hostkey_fingerprint/2 respectively.
Note that the decode/2 and encode/2 are not exact replacement functions, some
minor changes may be needed. Se the manual for more information.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17921

 Public_Key 1.12.0.2

 Fixed Bugs and Malfunctions

	Country name comparison shall be case insensitive
Own Id: OTP-18718 Aux Id: GH-7546

 Public_Key 1.12.0.1

 Fixed Bugs and Malfunctions

	Correct asn1 typenames available in type pki_asn1_type()
Own Id: OTP-18189 Aux Id: ERIERL-829

 Public_Key 1.12

 Improvements and New Features

	Support password fun for protected keyfiles in ssl:connect function.
Own Id: OTP-17816 Aux Id: PR-5607

 Public_Key 1.11.3

 Fixed Bugs and Malfunctions

	Avoid re-encoding of decoded certificates. This could cause unexpected
failures as some subtle encoding errors can be tolerated when decoding but
hence creating another sequence of bytes if the decoded value is re-encoded.
Own Id: OTP-17657

 Public_Key 1.11.2

 Fixed Bugs and Malfunctions

	public_key:pkix_sign/2 now honors the salt length from the provided input
parameters. Earlier this could result in incorrect signatures if not using
recommended defaults.
Own Id: OTP-17534 Aux Id: GH-5054, PR-5057

 Improvements and New Features

	When decoding an 'ECPrivateKey' unwrap the private key. For more precise
information see RFC 8410, section 7.
Own Id: OTP-17609 Aux Id: GH-5157, GH-5156

 Public_Key 1.11.1

 Fixed Bugs and Malfunctions

	Handle cross-signed root certificates when old root expired as reported in
GH-4877.
Own Id: OTP-17475 Aux Id: GH-4877

 Public_Key 1.11

 Improvements and New Features

	TLS connections now support EdDSA certificates.
Own Id: OTP-17142 Aux Id: PR-4756, GH-4637, GH-4650

	The functions public_key:ssh_encode/2, public_key:ssh_decode/2,
public_key:ssh_hostkey_fingerprint/1 and public_key:ssh_hostkey_fingerprint/2
are deprecated.
Replacement functions are available in SSH, see the
Deprecations chapter in the
Erlang/OTP documentation.
Own Id: OTP-17352

	Enhance documentation and logging of certificate handling.
Own Id: OTP-17384 Aux Id: GH-4800

 Public_Key 1.10.0.1

 Fixed Bugs and Malfunctions

	Handle cross-signed root certificates when old root expired as reported in
GH-4877.
Own Id: OTP-17475 Aux Id: GH-4877

 Public_Key 1.10

 Fixed Bugs and Malfunctions

	Fixed case insensitive hostname check.
Own Id: OTP-17242 Aux Id: GH-4500

 Improvements and New Features

	Add sanity check of trusted anchor certificate expiration to
pkix_path_validation/3. Although the anchor is considered a trusted input this
sanity check does provide extra security for the users of the public_key
application as this property needs to be checked at time of usage and fits
very well with the other checks performed here.
Own Id: OTP-16907

	Adjust generation of test certificates to conform to RFC 5280 rules for
formatting of the certificates validity
Own Id: OTP-17111

 Public_Key 1.9.2

 Improvements and New Features

	Corrected dialyzer spec for pkix_path_validation/3
Own Id: OTP-17069

 Public_Key 1.9.1

 Fixed Bugs and Malfunctions

	Fix the issue that pem_decode will crash with an invalid input.
Own Id: OTP-16902 Aux Id: ERIERL-534

 Public_Key 1.9

 Fixed Bugs and Malfunctions

	Fixed an insignificant whitespace issue when decoding PEM file.
Own Id: OTP-16801 Aux Id: ERL-1309

 Improvements and New Features

	Experimental OCSP client support.
Own Id: OTP-16448

	Use user returned path validation error for selfsigned cert. It allows users
of the ssl application to customize the generated TLS alert, within the range
of defined alerts.
Own Id: OTP-16592

	add API function to retrieve the subject-ID of an X509 certificate
Own Id: OTP-16705

 Public_Key 1.8

 Improvements and New Features

	Added support for RSA-PSS signature schemes
Own Id: OTP-15247

	Calls of deprecated functions in the
Old Crypto API are replaced by calls of
their substitutions.
Own Id: OTP-16346

 Public_Key 1.7.2

 Improvements and New Features

	Add support for key exchange with Edward curves and PSS-RSA padding in
signature verification.
Own Id: OTP-16528

 Public_Key 1.7.1

 Fixed Bugs and Malfunctions

	Corrected CRL handling which could cause CRL verification to fail. This could
happen when the CRL distribution point explicitly specifies the CRL issuer,
that is not using the fallback.
Own Id: OTP-16156 Aux Id: ERL-1030

 Public_Key 1.7

 Fixed Bugs and Malfunctions

	Support Password based encryption with AES
Own Id: OTP-15870 Aux Id: ERL-952

 Improvements and New Features

	Change dialyzer spec to avoid confusion
Own Id: OTP-15843 Aux Id: ERL-915

 Public_Key 1.6.7

 Fixed Bugs and Malfunctions

	RSA options passed to crypto for encrypt and decrypt with public or private
key.
Own Id: OTP-15754 Aux Id: ERL-878

	Fix dialyzer warnings caused by a faulty type specification for digest_type().
This change updates digest_type() and the functions operating with this
argument type to accept both 'sha1' and 'sha' as digest_type().
Own Id: OTP-15776

 Improvements and New Features

	Add possibility to read PEM files encrypted with old PEM encryption using
AES-256
Own Id: OTP-13726

	Relax decoding of certificates to so that "harmless" third party encoding
errors may be accepted but not created by the public_key application. This
adds acceptance of using an incorrect three character country code, the PKIX
standard use two character country codes. It is also accepted that the country
code is utf8 encoded but the specification says it should be ASCII.
Own Id: OTP-15687 Aux Id: PR-2162

 Public_Key 1.6.6.1

 Fixed Bugs and Malfunctions

	Support Password based encryption with AES
Own Id: OTP-15870 Aux Id: ERL-952

 Public_Key 1.6.6

 Improvements and New Features

	Back port of bug fix ERL-893 from OTP-22 and document enhancements that will
solve dialyzer warnings for users of the ssl application.
This change also affects public_key, eldap (and inet doc).
Own Id: OTP-15785 Aux Id: ERL-929, ERL-893, PR-2215

 Public_Key 1.6.5

 Improvements and New Features

	Add export of dialyzer type
Own Id: OTP-15624

 Public_Key 1.6.4

 Improvements and New Features

	Added ed25519 and ed448 sign/verify.
Requires OpenSSL 1.1.1 or higher as cryptolib under the OTP application
crypto.
Own Id: OTP-15419 Aux Id: OTP-15094

 Public_Key 1.6.3

 Fixed Bugs and Malfunctions

	Add DSA SHA2 oids in public_keys ASN1-spec and public_key:pkix_sign_types/1
Own Id: OTP-15367

 Public_Key 1.6.2

 Fixed Bugs and Malfunctions

	Removed #DSAPrivateKey{} as acceptable input to public_key:verify/5.
Own Id: OTP-15284

 Improvements and New Features

	The typing in the CRYPTO and PUBLIC_KEY applications are reworked and a few
mistakes are corrected.
The documentation is now generated from the typing and some clarifications are
made.
A new chapter on Algorithm Details such as key sizes and availability is added
to the CRYPTO User's Guide.
Own Id: OTP-15134

 Public_Key 1.6.1

 Fixed Bugs and Malfunctions

	Some of the keylengths in the newly generated moduli file in public_key are
not universally supported. This could cause the SSH key exchange
diffie-hellman-group-exchange-sha* to fail.
Those keylengths are now removed.
Own Id: OTP-15151 Aux Id: OTP-15113

 Public_Key 1.6

 Fixed Bugs and Malfunctions

	Update calls to the base64 module to conform to that module's type
specifications.
Own Id: OTP-14788 Aux Id: OTP-14624

 Improvements and New Features

	Use uri_string module instead of http_uri.
Own Id: OTP-14902

	A new function - public_key:pkix_verify_hostname_match_fun/1 - returns a
fun to be given as option match_fun to public_key:pkix_verify_hostname/3
or via ssl.
The fun makes the verify hostname matching according to the specific rules for
the protocol in the argument. Presently only https is supported.
Own Id: OTP-14962 Aux Id: ERL-542, OTP-15102

	Complete PKCS-8 encoding support and enhance the decoding of 'PrivateKeyInfo'
to conform to the rest of Erlang public_key API.
Own Id: OTP-15093

	A new moduli file is generated. This file is used for the recommended
diffie-hellman-group-exchange-sha256 key exchange algorithm in SSH.
Own Id: OTP-15113

 Public_Key 1.5.2

 Fixed Bugs and Malfunctions

	Fixed a bug in public_key:ssh_encode/2 that made it possible to erroneously
encode e.g. an RSA key with another type e.g. ECDSA in the resulting binary.
Own Id: OTP-14570 Aux Id: ERIERL-52, OTP-14676

	Corrected handling of parameterized EC keys in public_key:generate_key/1 so
that it will work as expected instead of causing a runtime error in crypto.
Own Id: OTP-14620

 Public_Key 1.5.1

 Improvements and New Features

	Hostname verification: Add handling of the general name iPAddress in
certificate's subject alternative name extension (subjAltName).
Own Id: OTP-14653

	Correct key handling in pkix_test_data/1 and use a generic example mail
address instead of an existing one.
Own Id: OTP-14766

 Public_Key 1.5

 Fixed Bugs and Malfunctions

	public_key now handles elliptic curve parameters in a consistent way so that
decoded ECDSA keys can be correctly re-encoded.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14621 Aux Id: ERL-480, ERL-481

 Improvements and New Features

	Extend crypto:sign, crypto:verify, public_key:sign and public_key:verify with:
* support for RSASSA-PS padding for signatures and for saltlength setting
* X9.31 RSA padding.
* sha, sha224, sha256, sha384, and sha512 for dss signatures as mentioned in
NIST SP 800-57 Part 1.
* ripemd160 to be used for RSA signatures.
This is a manual merge of half of the pull request 838 by potatosalad from
Sept 2015.
Own Id: OTP-13704 Aux Id: PR838

	Add API function pkix_test_data/1 for facilitating automated testing. This is
useful for applications that perform X509-certifcate path validation of so
called certificate chains, such as TLS.
Own Id: OTP-14181

	Improved error propagation and reports
Own Id: OTP-14236

	RSAPrivateKey version is set to 'two-prime' instead of using the underlying
enumeration value directly.
Own Id: OTP-14534

	Deprecated function crypto:rand_uniform/2 is replaced by rand:uniform/1.
Own Id: OTP-14608

 Public_Key 1.4.1

 Fixed Bugs and Malfunctions

	Bug for public_key:generate_key({namedCurve,OID}) fixed.
Own Id: OTP-14258

 Improvements and New Features

	Modernized internal representation used for crl validation by use of maps.
Own Id: OTP-14111

	Support EC key in pkix_sign/2
Own Id: OTP-14294

 Public_Key 1.4

 Improvements and New Features

	New function pkix_verify_hostname/2,3 Implements certificate hostname
checking. See the manual and RFC 6125.
Own Id: OTP-13009

	The ssh host key fingerprint generation now also takes a list of algorithms
and returns a list of corresponding fingerprints. See
public_key:ssh_hostkey_fingerprint/2 and the option silently_accept_hosts
in ssh:connect.
Own Id: OTP-14223

 Public_Key 1.3

 Improvements and New Features

	New function public_key:ssh_hostkey_fingerprint/1,2 to calculate the SSH
host key fingerprint string.
Own Id: OTP-13888 Aux Id: OTP-13887

 Public_Key 1.2

 Fixed Bugs and Malfunctions

	The ASN-1 type GeneralName can have more values, then the most common
directory name, the code now handles this.
Own Id: OTP-13554

 Improvements and New Features

	Handle PEM encoded EC public keys
Own Id: OTP-13408

 Public_Key 1.1.1

 Fixed Bugs and Malfunctions

	An encapsulated PEM header shall be followed by a blank line
Own Id: OTP-13381 Aux Id: seq13070

 Public_Key 1.1

 Improvements and New Features

	The 'ecdsa-sha2-nistp256', 'ecdsa-sha2-nistp384' and 'ecdsa-sha2-nistp521'
signature algorithms for ssh are implemented. See RFC 5656.
Own Id: OTP-12936

	There is now a file (public_key/priv/moduli) which lists
size-generator-modulus triples. The purpose is to give servers the possibility
to select the crypto primes randomly among a list of pregenerated triples.
This reduces the risk for some attacks on diffie-hellman negotiation.
See the reference manual for public_key:dh_gex_group/4 where the handling of
this is described.
The ssh server (ssh:daemon) uses this.
Own Id: OTP-13054 Aux Id: OTP-13052

	Add different upper bounds for different string types as suggested by comment
in PKIX1Explicit88.
Own Id: OTP-13132

 Public_Key 1.0.1

 Improvements and New Features

	Document enhancements
Own Id: OTP-12986

 Public_Key 1.0

 Improvements and New Features

	public_key: Remove legacy switch compact_bit_string
E.i bitstrings will not be decode as {Unused, Binary}, they are now Erlang
bitstrings.
Also the compact_bit_string implies the legacy_erlang_types switch So removing
the switch will also make OCTET STRING values be represented as binaries.
Undecoded open type will now be wrapped in a asn1_OPENTYPE tuple.
This will change some values in records returned by the public_key API making
this change a potentiall incompatibility.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-12110

 Public_Key 0.23

 Improvements and New Features

	Improve/extend support for CRL handling.
Own Id: OTP-12547 Aux Id: OTP-10362

 Public_Key 0.22.1

 Fixed Bugs and Malfunctions

	Added missing encoding support for PBES2, and also completed support for PBES1
that was incomplete.
Own Id: OTP-11915

 Public_Key 0.22

 Fixed Bugs and Malfunctions

	Fix incorrect dialyzer spec and types, also enhance documentation.
Thanks to Ayaz Tuncer.
Own Id: OTP-11627

	Application upgrade (appup) files are corrected for the following
applications:
asn1, common_test, compiler, crypto, debugger, dialyzer, edoc, eldap, erl_docgen, et, eunit, gs, hipe, inets, observer, odbc, os_mon, otp_mibs, parsetools, percept, public_key, reltool, runtime_tools, ssh, syntax_tools, test_server, tools, typer, webtool, wx, xmerl
A new test utility for testing appup files is added to test_server. This is
now used by most applications in OTP.
(Thanks to Tobias Schlager)
Own Id: OTP-11744

 Improvements and New Features

	Moved elliptic curve definition from the crypto NIF/OpenSSL into Erlang code,
adds the RFC-5639 brainpool curves and makes TLS use them (RFC-7027).
Thanks to Andreas Schultz
Own Id: OTP-11578

	Handle v1 CRLs, with no extensions and fixes issues with IDP (Issuing
Distribution Point) comparison during CRL validation.
Thanks to Andrew Thompson
Own Id: OTP-11761

 Public_Key 0.21

 Improvements and New Features

	Fixed a little typo in public_key documentation. Thanks to Tomas Morstein.
Own Id: OTP-11380

	public_key: Workaround for incorrectly encoded utf8 emailAddress. Thanks to
Andrew Bennett.
Own Id: OTP-11470

 Public_Key 0.20

 Improvements and New Features

	Extend PKCS-7 to support SCEP (Simple Certificate Enrollment Protocol).
Own Id: OTP-10874

	public_key:pem_entry_decode/2 now handles AES-128-CBC ciphered keys. Thanks to
Simon Cornish.
Own Id: OTP-11281

 Public_Key 0.19

 Improvements and New Features

	Add support for ISO oids 1.3.14.3.2.29 and 1.3.14.3.2.27 that are sometimes
used instead of the PKCS defined oids 1.2.840.113549.1.1.5 and
1.2.840.10040.4.3. Add function pkix_sign_types:/1 that translates oids to to
algorithm atoms ex:
public_key:pkix_sign_types({1,3,14,3,2,29}). {sha,rsa}

Own Id: OTP-10873

	Integrate elliptic curve contribution from Andreas Schultz
In order to be able to support elliptic curve cipher suites in SSL/TLS,
additions to handle elliptic curve infrastructure has been added to public_key
and crypto.
This also has resulted in a rewrite of the crypto API to gain consistency and
remove unnecessary overhead. All OTP applications using crypto has been
updated to use the new API.
Impact: Elliptic curve cryptography (ECC) offers equivalent security with
smaller key sizes than other public key algorithms. Smaller key sizes result
in savings for power, memory, bandwidth, and computational cost that make ECC
especially attractive for constrained environments.
Own Id: OTP-11009

 Public_Key 0.18

 Fixed Bugs and Malfunctions

	Fix subjectPublicKeyInfo type comment in public_key. Thanks to Ryosuke Nakai.
Own Id: OTP-10670

 Improvements and New Features

	public_key now supports CRL validation and documents the function
public_key:pkix_path_validation/3
Own Id: OTP-7045

	Some examples overflowing the width of PDF pages have been corrected.
Own Id: OTP-10665

	Fixed typo's in public_key spec.
Own Id: OTP-10723

	Corrected PKCS-10 documentation and added some PKCS-9 support that is fairly
commonly used by PKCS-10. Full support for PKCS-9 will be added later.
Own Id: OTP-10767

 Public_Key 0.17

 Fixed Bugs and Malfunctions

	ssh_decode now handles comments, at the end of the line, containing with
spaces correctly
Own Id: OTP-9361

	Add missing references to sha224 and sha384
Own Id: OTP-9362 Aux Id: seq12116

 Improvements and New Features

	public_key now supports PKCS-10 and includes experimental support for PKCS-7
Own Id: OTP-10509 Aux Id: kunagi-291 [202]

 Public_Key 0.16

 Improvements and New Features

	Add crypto and public_key support for the hash functions SHA224, SHA256,
SHA384 and SHA512 and also hmac and rsa_sign/verify support using these hash
functions. Thanks to Andreas Schultz for making a prototype.
Own Id: OTP-9908

	Optimize RSA private key handling in crypto and public_key.
Own Id: OTP-10065

 Public_Key 0.15

 Improvements and New Features

	Changed ssh implementation to use the public_key application for all public
key handling. This is also a first step for enabling a callback API for
supplying public keys and handling keys protected with password phrases.
Additionally the test suites where improved so that they do not copy the users
keys to test server directories as this is a security liability. Also ipv6 and
file access issues found in the process has been fixed.
This change also solves OTP-7677 and OTP-7235
This changes also involves some updates to public_keys ssh-functions.
Own Id: OTP-9911

 Public_Key 0.14

 Improvements and New Features

	public_key, ssl and crypto now supports PKCS-8
Own Id: OTP-9312

	The asn1 decoder/encoder now uses a runtime nif from the asn1 application if
it is available.
Own Id: OTP-9414

 Public_Key 0.13

 Fixed Bugs and Malfunctions

	replace "a ssl" with "an ssl" reindent pkix_path_validation/3 Trivial
documentation fixes (Thanks to Christian von Roques)
Own Id: OTP-9464

 Public_Key 0.12

 Improvements and New Features

	The public_key application now supports encode/decode of ssh public-key files.
Own Id: OTP-9144

 Public_Key 0.11

 Improvements and New Features

	Allows the public_key module to decode and encode RSA and DSA keys encoded
using the SubjectPublicKeyInfo format. When pem_entry_encode is called on an
RSA or DSA public key type, the key is wrapped in the SubjectPublicKeyInfo
format.
Own Id: OTP-9061

 Public_Key 0.10

 Improvements and New Features

	Improved dialyzer specs.
Own Id: OTP-8964

 Public_Key 0.9

 Improvements and New Features

	Updated ssl to ignore CA certs that violate the asn1-spec for a certificate,
and updated public key asn1 spec to handle inherited DSS-params.
Own Id: OTP-7884

	Changed ssl implementation to retain backwards compatibility for old option
{verify, 0} that shall be equivalent to {verify, verify_none}, also
separate the cases unknown ca and selfsigned peer cert, and restored return
value of deprecated function public_key:pem_to_der/1.
Own Id: OTP-8858

	Better handling of v1 and v2 certificates. V1 and v2 certificates does not
have any extensions so then validate_extensions should just accept that there
are none and not end up in missing_basic_constraints clause.
Own Id: OTP-8867

	Changed the verify fun so that it differentiate between the peer certificate
and CA certificates by using valid_peer or valid as the second argument to the
verify fun. It may not always be trivial or even possible to know when the
peer certificate is reached otherwise.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8873

 Public_Key 0.8

 Fixed Bugs and Malfunctions

	Handling of unknown CA certificates was changed in ssl and public_key to work
as intended.
Own Id: OTP-8788

 Improvements and New Features

	Revise the public_key API - Cleaned up and documented the public_key API to
make it useful for general use, also changed ssl to use the new API.
Own Id: OTP-8722

	Added the functionality so that the verification fun will be called when a
certificate is considered valid by the path validation to allow access to each
certificate in the path to the user application. Also try to verify
subject-AltName, if unable to verify it let the application verify it.
Own Id: OTP-8825

 Public_Key 0.7

 Fixed Bugs and Malfunctions

	Certificates without any extensions could not be handled by public_key.
Own Id: OTP-8626

 Improvements and New Features

	Code cleanup and minor bugfixes.
Own Id: OTP-8649

 Public_Key 0.6

 Improvements and New Features

	Support for Diffie-Hellman. ssl-3.11 requires public_key-0.6.
Own Id: OTP-7046

	Moved extended key usage test for ssl values to ssl.
Own Id: OTP-8553 Aux Id: seq11541, OTP-8554

 Public_Key 0.5

 Improvements and New Features

	Added public_key:pkix_transform/2 to enable ssl to send CA list during
Certificate Request.
NOTE: SSL (new_ssl) requires public_key-0.5. ssl usage.
Own Id: OTP-8372

 Public_Key 0.4

 Improvements and New Features

	The documentation is now built with open source tools (xsltproc and fop) that
exists on most platforms. One visible change is that the frames are removed.
Own Id: OTP-8250

 Public_Key 0.3

 Fixed Bugs and Malfunctions

	Unknown attributes in certificates are left encoded instead of crashing. Patch
by Will "wglozer" thanks.
Own Id: OTP-8100

 Improvements and New Features

	Allow public_key:pem_to_der/[1,2] to take a binary as argument in addition to
a filename. Patch by Geoff Cant, thanks.
Own Id: OTP-8142

 Public_Key 0.2

 Improvements and New Features

	X509 certificate handling has been extended and improved as a result of more
extensive testing of both the ssl and public_key application. Even more
extensions of the certificate handling is yet to be implemented.
Own Id: OTP-7860

 Public_Key 0.1

 Improvements and New Features

	First version.
Own Id: OTP-7637

Public-Key Records

This chapter briefly describes Erlang records derived from ASN.1 specifications
used to handle public key infrastructure. The scope is to describe the data
types of each component, not the semantics. For information on the semantics,
refer to the relevant standards and RFCs linked in the sections below.
Use the following include directive to get access to the records and constant
macros described in the following sections:
 -include_lib("public_key/include/public_key.hrl").

 Data Types

Common non-standard Erlang data types used to describe the record fields in the
following sections and which are not defined in the Public Key
Reference Manual follows here:
time() = utc_time() | general_time()

utc_time() = {utcTime, "YYMMDDHHMMSSZ"}

general_time() = {generalTime, "YYYYMMDDHHMMSSZ"}

general_name() = {rfc822Name, string()} |

 {dNSName, string()} |

 {x400Address, string() |

 {directoryName, {rdnSequence, [#'AttributeTypeAndValue'{}]}} |

 {ediPartyName, special_string()} |

 {ediPartyName, special_string(), special_string()} |

 {uniformResourceIdentifier, string()} |

 {iPAddress, string()} |

 {registeredId, oid()} |

 {otherName, term()}

special_string() = {teletexString, string()} |

 {printableString, string()} |

 {universalString, string()} |

 {utf8String, binary()} |

 {bmpString, string()}

dist_reason() = unused | keyCompromise | cACompromise | affiliationChanged |
 cessationOfOperation | certificateHold | privilegeWithdrawn | aACompromise

OID_macro() = ?OID_name()

OID_name() = atom()

 RSA

Erlang representation of
Rivest-Shamir-Adleman cryptosystem (RSA)
keys follows:
#'RSAPublicKey'{
 modulus, % pos_integer()
 publicExponent % pos_integer()
 }.

#'RSAPrivateKey'{
 version, % two-prime | multi
 modulus, % pos_integer()
 publicExponent, % pos_integer()
 privateExponent, % pos_integer()
 prime1, % pos_integer()
 prime2, % pos_integer()
 exponent1, % pos_integer()
 exponent2, % pos_integer()
 coefficient, % pos_integer()
 otherPrimeInfos % [#OtherPrimeInfo{}] | asn1_NOVALUE
 }.

#'OtherPrimeInfo'{
 prime, % pos_integer()
 exponent, % pos_integer()
 coefficient % pos_integer()
 }.

#'RSASSA-PSS-params'{
 hashAlgorithm, % #'HashAlgorithm'{}},
 maskGenAlgorithm, % #'MaskGenAlgorithm'{}},
 saltLength, % pos_integer(),
 trailerField, % pos_integer()
 }.

#'HashAlgorithm'{
 algorithm, % oid()
 parameters % defaults to asn1_NOVALUE
 }.

#'MaskGenAlgorithm'{
 algorithm, % oid()
 parameters, % defaults to asn1_NOVALUE
 }.

 DSA

Erlang representation of
Digital Signature Algorithm (DSA) keys
#'DSAPrivateKey'{
 version, % pos_integer()
 p, % pos_integer()
 q, % pos_integer()
 g, % pos_integer()
 y, % pos_integer()
 x % pos_integer()
 }.

#'Dss-Parms'{
 p, % pos_integer()
 q, % pos_integer()
 g % pos_integer()
 }.

 ECDSA and EDDSA

Erlang representation of
Elliptic Curve Digital Signature Algorithm (ECDSA)
and
Edwards-Curve Digital Signature Algorithm (EDDSA)
where parameters in the private key will be
{namedCurve, ?'id-Ed25519' | ?'id-Ed448'}.
#'ECPrivateKey'{
 version, % pos_integer()
 privateKey, % binary()
 parameters, % {ecParameters, #'ECParameters'{}} |
 % {namedCurve, Oid::tuple()} |
 % {implicitlyCA, 'NULL'}
 publicKey % bitstring()
 }.

#'ECParameters'{
 version, % pos_integer()
 fieldID, % #'FieldID'{}
 curve, % #'Curve'{}
 base, % binary()
 order, % pos_integer()
 cofactor % pos_integer()
 }.

#'Curve'{
 a, % binary()
 b, % binary()
 seed % bitstring() - optional
 }.

#'FieldID'{
 fieldType, % oid()
 parameters % Depending on fieldType
 }.

#'ECPoint'{
 point % binary() - the public key
 }.

 PKIX Certificates

Erlang representation of PKIX certificates derived from ASN.1 specifications see
also X509 certificates (RFC 5280), also
referred to as plain type, are as follows:
#'Certificate'{
 tbsCertificate, % #'TBSCertificate'{}
 signatureAlgorithm, % #'AlgorithmIdentifier'{}
 signature % bitstring()
 }.

#'TBSCertificate'{
 version, % v1 | v2 | v3
 serialNumber, % pos_integer()
 signature, % #'AlgorithmIdentifier'{}
 issuer, % {rdnSequence, [#AttributeTypeAndValue'{}]
 validity, % #'Validity'{}
 subject, % {rdnSequence, [#AttributeTypeAndValue'{}]}
 subjectPublicKeyInfo, % #'SubjectPublicKeyInfo'{}
 issuerUniqueID, % binary() | asn1_novalue
 subjectUniqueID, % binary() | asn1_novalue
 extensions % [#'Extension'{}]
 }.

#'AlgorithmIdentifier'{
 algorithm, % oid()
 parameters % der_encoded()
 }.
Erlang alternate representation of PKIX certificate, also referred to as otp
type
#'OTPCertificate'{
 tbsCertificate, % #'OTPTBSCertificate'{}
 signatureAlgorithm, % #'SignatureAlgorithm'
 signature % bitstring()
 }.

#'OTPTBSCertificate'{
 version, % v1 | v2 | v3
 serialNumber, % pos_integer()
 signature, % #'SignatureAlgorithm'
 issuer, % {rdnSequence, [#AttributeTypeAndValue'{}]}
 validity, % #'Validity'{}
 subject, % {rdnSequence, [#AttributeTypeAndValue'{}]}
 subjectPublicKeyInfo, % #'OTPSubjectPublicKeyInfo'{}
 issuerUniqueID, % binary() | asn1_novalue
 subjectUniqueID, % binary() | asn1_novalue
 extensions % [#'Extension'{}]
 }.

#'SignatureAlgorithm'{
 algorithm, % id_signature_algorithm()
 parameters % asn1_novalue | #'Dss-Parms'{}
 }.
id_signature_algorithm() = OID_macro()
The available OID names are as follows:
	OID Name
	id-dsa-with-sha1
	id-dsaWithSHA1 (ISO or OID to above)
	md2WithRSAEncryption
	md5WithRSAEncryption
	sha1WithRSAEncryption
	sha-1WithRSAEncryption (ISO or OID to above)
	sha224WithRSAEncryption
	sha256WithRSAEncryption
	sha512WithRSAEncryption
	ecdsa-with-SHA1

Table: Signature Algorithm OIDs
The data type 'AttributeTypeAndValue', is represented as the following erlang
record:
#'AttributeTypeAndValue'{
 type, % id_attributes()
 value % term()
 }.
The attribute OID name atoms and their corresponding value types are as follows:
	OID Name	Value Type
	id-at-name	special_string()
	id-at-surname	special_string()
	id-at-givenName	special_string()
	id-at-initials	special_string()
	id-at-generationQualifier	special_string()
	id-at-commonName	special_string()
	id-at-localityName	special_string()
	id-at-stateOrProvinceName	special_string()
	id-at-organizationName	special_string()
	id-at-title	special_string()
	id-at-dnQualifier	{printableString, string()}
	id-at-countryName	{printableString, string()}
	id-at-serialNumber	{printableString, string()}
	id-at-pseudonym	special_string()

Table: Attribute OIDs
The data types 'Validity', 'SubjectPublicKeyInfo', and
'SubjectPublicKeyInfoAlgorithm' are represented as the following Erlang
records:
#'Validity'{
 notBefore, % time()
 notAfter % time()
 }.

#'SubjectPublicKeyInfo'{
 algorithm, % #AlgorithmIdentifier{}
 subjectPublicKey % binary()
 }.

#'SubjectPublicKeyInfoAlgorithm'{
 algorithm, % id_public_key_algorithm()
 parameters % public_key_params()
 }.
The public-key algorithm OID name atoms are as follows:
	OID Name
	rsaEncryption
	id-dsa
	dhpublicnumber
	id-keyExchangeAlgorithm
	id-ecPublicKey

Table: Public-Key Algorithm OIDs
#'Extension'{
 extnID, % id_extensions() | oid()
 critical, % boolean()
 extnValue % der_encoded()
 }.
id_extensions()
Standard Certificate Extensions,
Private Internet Extensions,
CRL Extensions and
CRL Entry Extensions.

 Standard Certificate Extensions

The standard certificate extensions OID name atoms and their corresponding value
types are as follows:
	OID Name	Value Type
	id-ce-authorityKeyIdentifier	#'AuthorityKeyIdentifier'{}
	id-ce-subjectKeyIdentifier	oid()
	id-ce-keyUsage	[key_usage()]
	id-ce-privateKeyUsagePeriod	#'PrivateKeyUsagePeriod'{}
	id-ce-certificatePolicies	#'PolicyInformation'{}
	id-ce-policyMappings	#'PolicyMappings_SEQOF'{}
	id-ce-subjectAltName	general_name()
	id-ce-issuerAltName	general_name()
	id-ce-subjectDirectoryAttributes	[#'Attribute'{}]
	id-ce-basicConstraints	#'BasicConstraints'{}
	id-ce-nameConstraints	#'NameConstraints'{}
	id-ce-policyConstraints	#'PolicyConstraints'{}
	id-ce-extKeyUsage	[id_key_purpose()]
	id-ce-cRLDistributionPoints	[#'DistributionPoint'{}]
	id-ce-inhibitAnyPolicy	pos_integer()
	id-ce-freshestCRL	[#'DistributionPoint'{}]

Table: Standard Certificate Extensions
Here:
key_usage() = digitalSignature | nonRepudiation | keyEncipherment
 | dataEncipherment | keyAgreement | keyCertSign
 | cRLSign | encipherOnly | decipherOnly
And for id_key_purpose():
	OID Name
	id-kp-serverAuth
	id-kp-clientAuth
	id-kp-codeSigning
	id-kp-emailProtection
	id-kp-timeStamping
	id-kp-OCSPSigning

Table: Key Purpose OIDs
#'AuthorityKeyIdentifier'{
 keyIdentifier, % oid()
 authorityCertIssuer, % general_name()
 authorityCertSerialNumber % pos_integer()
 }.

#'PrivateKeyUsagePeriod'{
 notBefore, % general_time()
 notAfter % general_time()
 }.

#'PolicyInformation'{
 policyIdentifier, % oid()
 policyQualifiers % [#PolicyQualifierInfo{}]
 }.

#'PolicyQualifierInfo'{
 policyQualifierId, % oid()
 qualifier % string() | #'UserNotice'{}
 }.

#'UserNotice'{
 noticeRef, % #'NoticeReference'{}
 explicitText % string()
 }.

#'NoticeReference'{
 organization, % string()
 noticeNumbers % [pos_integer()]
 }.

#'PolicyMappings_SEQOF'{
 issuerDomainPolicy, % oid()
 subjectDomainPolicy % oid()
 }.

#'Attribute'{
 type, % oid()
 values % [der_encoded()]
 }).

#'BasicConstraints'{
 cA, % boolean()
 pathLenConstraint % pos_integer()
 }).

#'NameConstraints'{
 permittedSubtrees, % [#'GeneralSubtree'{}]
 excludedSubtrees % [#'GeneralSubtree'{}]
 }).

#'GeneralSubtree'{
 base, % general_name()
 minimum, % pos_integer()
 maximum % pos_integer()
 }).

#'PolicyConstraints'{
 requireExplicitPolicy, % pos_integer()
 inhibitPolicyMapping % pos_integer()
 }).

#'DistributionPoint'{
 distributionPoint, % {fullName, [general_name()]} | {nameRelativeToCRLIssuer,[#AttributeTypeAndValue{}]}
 reasons, % [dist_reason()]
 cRLIssuer % [general_name()]
 }).

 Private Internet Extensions

The private internet extensions OID name atoms and their corresponding value
types are as follows:
	OID Name	Value Type
	id-pe-authorityInfoAccess	[#'AccessDescription'{}]
	id-pe-subjectInfoAccess	[#'AccessDescription'{}]

Table: Private Internet Extensions
#'AccessDescription'{
 accessMethod, % oid()
 accessLocation % general_name()
 }).

 CRL and CRL Extensions Profile

Erlang representation of CRL and CRL extensions profile derived from ASN.1
specifications and RFC 5280 are as follows:
#'CertificateList'{
 tbsCertList, % #'TBSCertList{}
 signatureAlgorithm, % #'AlgorithmIdentifier'{}
 signature % bitstring()
 }).

#'TBSCertList'{
 version, % v2 (if defined)
 signature, % #AlgorithmIdentifier{}
 issuer, % {rdnSequence, [#AttributeTypeAndValue'{}]}
 thisUpdate, % time()
 nextUpdate, % time()
 revokedCertificates, % [#'TBSCertList_revokedCertificates_SEQOF'{}]
 crlExtensions % [#'Extension'{}]
 }).

#'TBSCertList_revokedCertificates_SEQOF'{
 userCertificate, % pos_integer()
 revocationDate, % timer()
 crlEntryExtensions % [#'Extension'{}]
 }).

 CRL Extensions

The CRL extensions OID name atoms and their corresponding value types are as
follows:
	OID Name	Value Type
	id-ce-authorityKeyIdentifier	#'AuthorityKeyIdentifier{}
	id-ce-issuerAltName	{rdnSequence, [#AttributeTypeAndValue'{}]}
	id-ce-cRLNumber	pos_integer()
	id-ce-deltaCRLIndicator	pos_integer()
	id-ce-issuingDistributionPoint	#'IssuingDistributionPoint'{}
	id-ce-freshestCRL	[#'Distributionpoint'{}]

Table: CRL Extensions
Here, the data type 'IssuingDistributionPoint' is represented as the following
Erlang record:
#'IssuingDistributionPoint'{
 distributionPoint, % {fullName, [general_name()]} | {nameRelativeToCRLIssuer, [#'AttributeTypeAndValue'{}]}
 onlyContainsUserCerts, % boolean()
 onlyContainsCACerts, % boolean()
 onlySomeReasons, % [dist_reason()]
 indirectCRL, % boolean()
 onlyContainsAttributeCerts % boolean()
 }).

 CRL Entry Extensions

The CRL entry extensions OID name atoms and their corresponding value types are
as follows:
	OID Name	Value Type
	id-ce-cRLReason	crl_reason()
	id-ce-holdInstructionCode	oid()
	id-ce-invalidityDate	general_time()
	id-ce-certificateIssuer	general_name()

Table: CRL Entry Extensions
Here:
 crl_reason() = unspecified | keyCompromise | cACompromise
 | affiliationChanged | superseded | cessationOfOperation
 | certificateHold | removeFromCRL
 | privilegeWithdrawn | aACompromise

 PKCS#10 Certification Request

Erlang representation of a PKCS#10 certification request derived from ASN.1
specifications and RFC 5280 are as follows:
#'CertificationRequest'{
 certificationRequestInfo, % #'CertificationRequestInfo'{},
 signatureAlgorithm, % #'CertificationRequest_signatureAlgorithm'{}}.
 signature % bitstring()
 }.

#'CertificationRequestInfo'{
 version, % atom(),
 subject, % {rdnSequence, [#AttributeTypeAndValue'{}]} ,
 subjectPKInfo, % #'CertificationRequestInfo_subjectPKInfo'{},
 attributes % [#'AttributePKCS-10' {}]
 }.

#'CertificationRequestInfo_subjectPKInfo'{
 algorithm, % #'CertificationRequestInfo_subjectPKInfo_algorithm'{}
 subjectPublicKey % bitstring()
 }.

#'CertificationRequestInfo_subjectPKInfo_algorithm'{
 algorithm, % oid(),
 parameters % der_encoded()
 }.

#'CertificationRequest_signatureAlgorithm'{
 algorithm, % oid(),
 parameters % der_encoded()
 }.

#'AttributePKCS-10'{
 type, % oid(),
 values % [der_encoded()]
 }.

Examples

This section describes examples of how to use the Public Key API. Keys and
certificates used in the following sections are generated only for testing the
Public Key application.
Some shell printouts in the following examples are abbreviated for increased
readability.

 PEM Files

Public-key data (keys, certificates, and so on) can be stored in Privacy
Enhanced Mail (PEM) format. The PEM files have the following structure:
 <text>
 -----BEGIN <SOMETHING>-----
 <Attribute> : <Value>
 <Base64 encoded DER data>
 -----END <SOMETHING>-----
 <text>
A file can contain several BEGIN/END blocks. Text lines between blocks are
ignored. Attributes, if present, are ignored except for Proc-Type and
DEK-Info, which are used when DER data is encrypted.

 DSA Private Key

A DSA private key can look as follows:
Note
File handling is not done by the Public Key application.

1> {ok, PemBin} = file:read_file("dsa.pem").
{ok,<<"-----BEGIN DSA PRIVATE KEY-----\nMIIBuw"...>>}
The following PEM file has only one entry, a private DSA key:
2>[DSAEntry] = public_key:pem_decode(PemBin).
[{'DSAPrivateKey',<<48,130,1,187,2,1,0,2,129,129,0,183,
 179,230,217,37,99,144,157,21,228,204,
 162,207,61,246,...>>,
 not_encrypted}]
3> Key = public_key:pem_entry_decode(DSAEntry).
#'DSAPrivateKey'{version = 0,
 p = 12900045185019966618...6593,
 q = 1216700114794736143432235288305776850295620488937,
 g = 10442040227452349332...47213,
 y = 87256807980030509074...403143,
 x = 510968529856012146351317363807366575075645839654}

 RSA Private Key with Password

An RSA private key encrypted with a password can look as follows:
1> {ok, PemBin} = file:read_file("rsa.pem").
{ok,<<"Bag Attribute"...>>}
The following PEM file has only one entry, a private RSA key:
2>[RSAEntry] = public_key:pem_decode(PemBin).
[{'RSAPrivateKey',<<224,108,117,203,152,40,15,77,128,126,
 221,195,154,249,85,208,202,251,109,
 119,120,57,29,89,19,9,...>>,
 {"DES-EDE3-CBC",<<"kÙeø¼pµL">>}}]
In this following example, the password is "abcd1234":
3> Key = public_key:pem_entry_decode(RSAEntry, "abcd1234").
#'RSAPrivateKey'{version = 'two-prime',
 modulus = 1112355156729921663373...2737107,
 publicExponent = 65537,
 privateExponent = 58064406231183...2239766033,
 prime1 = 11034766614656598484098...7326883017,
 prime2 = 10080459293561036618240...77738643771,
 exponent1 = 77928819327425934607...22152984217,
 exponent2 = 36287623121853605733...20588523793,
 coefficient = 924840412626098444...41820968343,
 otherPrimeInfos = asn1_NOVALUE}

 X509 Certificates

The following is an example of X509 certificates:
1> {ok, PemBin} = file:read_file("cacerts.pem").
{ok,<<"-----BEGIN CERTIFICATE-----\nMIIC7jCCAl"...>>}
The following file includes two certificates:
2> [CertEntry1, CertEntry2] = public_key:pem_decode(PemBin).
[{'Certificate',<<48,130,2,238,48,130,2,87,160,3,2,1,2,2,
 9,0,230,145,97,214,191,2,120,150,48,13,
 ...>>,
 not_encrypted},
 {'Certificate',<<48,130,3,200,48,130,3,49,160,3,2,1,2,2,1,
 1,48,13,6,9,42,134,72,134,247,...>>,
 not_encrypted}]
Certificates can be decoded as usual:
2> Cert = public_key:pem_entry_decode(CertEntry1).
#'Certificate'{
 tbsCertificate =
 #'TBSCertificate'{
 version = v3,serialNumber = 16614168075301976214,
 signature =
 #'AlgorithmIdentifier'{
 algorithm = {1,2,840,113549,1,1,5},
 parameters = <<5,0>>},
 issuer =
 {rdnSequence,
 [[#'AttributeTypeAndValue'{
 type = {2,5,4,3},
 value = <<19,8,101,114,108,97,110,103,67,65>>}],
 [#'AttributeTypeAndValue'{
 type = {2,5,4,11},
 value = <<19,10,69,114,108,97,110,103,32,79,84,80>>}],
 [#'AttributeTypeAndValue'{
 type = {2,5,4,10},
 value = <<19,11,69,114,105,99,115,115,111,110,32,65,66>>}],
 [#'AttributeTypeAndValue'{
 type = {2,5,4,7},
 value = <<19,9,83,116,111,99,107,104,111,108,109>>}],
 [#'AttributeTypeAndValue'{
 type = {2,5,4,6},
 value = <<19,2,83,69>>}],
 [#'AttributeTypeAndValue'{
 type = {1,2,840,113549,1,9,1},
 value = <<22,22,112,101,116,101,114,64,101,114,...>>}]]},
 validity =
 #'Validity'{
 notBefore = {utcTime,"080109082929Z"},
 notAfter = {utcTime,"080208082929Z"}},
 subject =
 {rdnSequence,
 [[#'AttributeTypeAndValue'{
 type = {2,5,4,3},
 value = <<19,8,101,114,108,97,110,103,67,65>>}],
 [#'AttributeTypeAndValue'{
 type = {2,5,4,11},
 value = <<19,10,69,114,108,97,110,103,32,79,84,80>>}],
 [#'AttributeTypeAndValue'{
 type = {2,5,4,10},
 value = <<19,11,69,114,105,99,115,115,111,110,32,...>>}],
 [#'AttributeTypeAndValue'{
 type = {2,5,4,7},
 value = <<19,9,83,116,111,99,107,104,111,108,...>>}],
 [#'AttributeTypeAndValue'{
 type = {2,5,4,6},
 value = <<19,2,83,69>>}],
 [#'AttributeTypeAndValue'{
 type = {1,2,840,113549,1,9,1},
 value = <<22,22,112,101,116,101,114,64,...>>}]]},
 subjectPublicKeyInfo =
 #'SubjectPublicKeyInfo'{
 algorithm =
 #'AlgorithmIdentifier'{
 algorithm = {1,2,840,113549,1,1,1},
 parameters = <<5,0>>},
 subjectPublicKey =
 {0,<<48,129,137,2,129,129,0,203,209,187,77,73,231,90,...>>}},
 issuerUniqueID = asn1_NOVALUE,
 subjectUniqueID = asn1_NOVALUE,
 extensions =
 [#'Extension'{
 extnID = {2,5,29,19},
 critical = true,
 extnValue = [48,3,1,1,255]},
 #'Extension'{
 extnID = {2,5,29,15},
 critical = false,
 extnValue = [3,2,1,6]},
 #'Extension'{
 extnID = {2,5,29,14},
 critical = false,
 extnValue = [4,20,27,217,65,152,6,30,142|...]},
 #'Extension'{
 extnID = {2,5,29,17},
 critical = false,
 extnValue = [48,24,129,22,112,101,116,101|...]}]},
 signatureAlgorithm =
 #'AlgorithmIdentifier'{
 algorithm = {1,2,840,113549,1,1,5},
 parameters = <<5,0>>},
 signature =
 <<163,186,7,163,216,152,63,47,154,234,139,73,154,96,120,
 165,2,52,196,195,109,167,192,...>>}
Parts of certificates can be decoded with public_key:der_decode/2, using the
ASN.1 type of that part. However, an application-specific certificate extension
requires application-specific ASN.1 decode/encode-functions. In the recent
example, the first value of rdnSequence is of ASN.1 type
'X520CommonName'. ({2,5,4,3} = ?id-at-commonName):
public_key:der_decode('X520CommonName', <<19,8,101,114,108,97,110,103,67,65>>).
{printableString,"erlangCA"}
However, certificates can also be decoded using pkix_decode_cert/2, which can
customize and recursively decode standard parts of a certificate:
3> {_, DerCert, _} = CertEntry1.
4> public_key:pkix_decode_cert(DerCert, otp).
#'OTPCertificate'{
 tbsCertificate =
 #'OTPTBSCertificate'{
 version = v3,serialNumber = 16614168075301976214,
 signature =
 #'SignatureAlgorithm'{
 algorithm = {1,2,840,113549,1,1,5},
 parameters = 'NULL'},
 issuer =
 {rdnSequence,
 [[#'AttributeTypeAndValue'{
 type = {2,5,4,3},
 value = {printableString,"erlangCA"}}],
 [#'AttributeTypeAndValue'{
 type = {2,5,4,11},
 value = {printableString,"Erlang OTP"}}],
 [#'AttributeTypeAndValue'{
 type = {2,5,4,10},
 value = {printableString,"Ericsson AB"}}],
 [#'AttributeTypeAndValue'{
 type = {2,5,4,7},
 value = {printableString,"Stockholm"}}],
 [#'AttributeTypeAndValue'{type = {2,5,4,6},value = "SE"}],
 [#'AttributeTypeAndValue'{
 type = {1,2,840,113549,1,9,1},
 value = "peter@erix.ericsson.se"}]]},
 validity =
 #'Validity'{
 notBefore = {utcTime,"080109082929Z"},
 notAfter = {utcTime,"080208082929Z"}},
 subject =
 {rdnSequence,
 [[#'AttributeTypeAndValue'{
 type = {2,5,4,3},
 value = {printableString,"erlangCA"}}],
 [#'AttributeTypeAndValue'{
 type = {2,5,4,11},
 value = {printableString,"Erlang OTP"}}],
 [#'AttributeTypeAndValue'{
 type = {2,5,4,10},
 value = {printableString,"Ericsson AB"}}],
 [#'AttributeTypeAndValue'{
 type = {2,5,4,7},
 value = {printableString,"Stockholm"}}],
 [#'AttributeTypeAndValue'{type = {2,5,4,6},value = "SE"}],
 [#'AttributeTypeAndValue'{
 type = {1,2,840,113549,1,9,1},
 value = "peter@erix.ericsson.se"}]]},
 subjectPublicKeyInfo =
 #'OTPSubjectPublicKeyInfo'{
 algorithm =
 #'PublicKeyAlgorithm'{
 algorithm = {1,2,840,113549,1,1,1},
 parameters = 'NULL'},
 subjectPublicKey =
 #'RSAPublicKey'{
 modulus =
 1431267547247997...37419,
 publicExponent = 65537}},
 issuerUniqueID = asn1_NOVALUE,
 subjectUniqueID = asn1_NOVALUE,
 extensions =
 [#'Extension'{
 extnID = {2,5,29,19},
 critical = true,
 extnValue =
 #'BasicConstraints'{
 cA = true,pathLenConstraint = asn1_NOVALUE}},
 #'Extension'{
 extnID = {2,5,29,15},
 critical = false,
 extnValue = [keyCertSign,cRLSign]},
 #'Extension'{
 extnID = {2,5,29,14},
 critical = false,
 extnValue = [27,217,65,152,6,30,142,132,245|...]},
 #'Extension'{
 extnID = {2,5,29,17},
 critical = false,
 extnValue = [{rfc822Name,"peter@erix.ericsson.se"}]}]},
 signatureAlgorithm =
 #'SignatureAlgorithm'{
 algorithm = {1,2,840,113549,1,1,5},
 parameters = 'NULL'},
 signature =
 <<163,186,7,163,216,152,63,47,154,234,139,73,154,96,120,
 165,2,52,196,195,109,167,192,...>>}
This call is equivalent to public_key:pem_entry_decode(CertEntry1):
5> public_key:pkix_decode_cert(DerCert, plain).
#'Certificate'{ ...}

 Encoding Public-Key Data to PEM Format

If you have public-key data and want to create a PEM file this can be done by
calling functions public_key:pem_entry_encode/2 and pem_encode/1 and saving
the result to a file. For example, assume that you have
PubKey = 'RSAPublicKey'{}. Then you can create a PEM-"RSA PUBLIC KEY" file
(ASN.1 type 'RSAPublicKey') or a PEM-"PUBLIC KEY" file
('SubjectPublicKeyInfo' ASN.1 type).
The second element of the PEM-entry is the ASN.1 DER encoded key data:
1> PemEntry = public_key:pem_entry_encode('RSAPublicKey', RSAPubKey).
{'RSAPublicKey', <<48,72,...>>, not_encrypted}

2> PemBin = public_key:pem_encode([PemEntry]).
<<"-----BEGIN RSA PUBLIC KEY-----\nMEgC...>>

3> file:write_file("rsa_pub_key.pem", PemBin).
ok
or:
1> PemEntry = public_key:pem_entry_encode('SubjectPublicKeyInfo', RSAPubKey).
{'SubjectPublicKeyInfo', <<48,92...>>, not_encrypted}

2> PemBin = public_key:pem_encode([PemEntry]).
<<"-----BEGIN PUBLIC KEY-----\nMFw...>>

3> file:write_file("pub_key.pem", PemBin).
ok

 RSA Public-Key Cryptography

Suppose you have the following private key and a corresponding public key:
	PrivateKey = #'RSAPrivateKey{}' and the plaintext Msg = binary()
	PublicKey = #'RSAPublicKey'{}

Then you can proceed as follows:
Encrypt with the private key:
RsaEncrypted = public_key:encrypt_private(Msg, PrivateKey),
Msg = public_key:decrypt_public(RsaEncrypted, PublicKey),
Encrypt with the public key:
RsaEncrypted = public_key:encrypt_public(Msg, PublicKey),
Msg = public_key:decrypt_private(RsaEncrypted, PrivateKey),
Note
You normally do only one of the encrypt or decrypt operations, and the peer
does the other. This normally used in legacy applications as a primitive
digital signature.

Warning
This legacy algorithm is broken although there exists a software prevention
when using appropriate OpenSSL cryptolib with Erlang/OTP it is hard to
guarantee security and we strongly recommend not using it.

 Digital Signatures

Suppose you have the following private key and a corresponding public key:
	PrivateKey = #'RSAPrivateKey{}' or #'DSAPrivateKey'{} and the plaintext
Msg = binary()
	PublicKey = #'RSAPublicKey'{} or {integer(), #'DssParams'{}}

Then you can proceed as follows:
Signature = public_key:sign(Msg, sha, PrivateKey),
true = public_key:verify(Msg, sha, Signature, PublicKey),
Note
You normally do only one of the sign or verify operations, and the peer does
the other.

It can be appropriate to calculate the message digest before calling sign or
verify, and then use none as second argument:
Digest = crypto:sha(Msg),
Signature = public_key:sign(Digest, none, PrivateKey),
true = public_key:verify(Digest, none, Signature, PublicKey),

 Verifying a certificate hostname

 Background

When a client checks a server certificate there are a number of checks available
like checks that the certificate is not revoked, not forged or not out-of-date.
There are however attacks that are not detected by those checks. Suppose a bad
guy has succeeded with a DNS infection. Then the client could believe it is
connecting to one host but ends up at another but evil one. Though it is evil,
it could have a perfectly legal certificate! The certificate has a valid
signature, it is not revoked, the certificate chain is not faked and has a
trusted root and so on.
To detect that the server is not the intended one, the client must additionally
perform a hostname verification. This procedure is described in
RFC 6125. The idea is that the
certificate lists the hostnames it could be fetched from. This is checked by the
certificate issuer when the certificate is signed. So if the certificate is
issued by a trusted root the client could trust the host names signed in it.
There is a default hostname matching procedure defined in
RFC 6125, section 6 as well as
protocol dependent variations defined in
RFC 6125 appendix B. The
default procedure is implemented in
public_key:pkix_verify_hostname/2,3. It
is possible for a client to hook in modified rules using the options list.
Some terminology is needed: the certificate presents hostname(s) on which it is
valid. Those are called Presented IDs. The hostname(s) the client believes it
connects to are called Reference IDs. The matching rules aims to verify that
there is at least one of the Reference IDs that matches one of the Presented
IDs. If not, the verification fails.
The IDs contains normal fully qualified domain names like e.g foo.example.com,
but IP addresses are not recommended. The rfc describes why this is not
recommended as well as security considerations about how to acquire the
Reference IDs.
Internationalized domain names are not supported.

 The verification process

Traditionally the Presented IDs were found in the Subject certificate field as
CN names. This is still quite common. When printing a certificate they show up
as:
 $ openssl x509 -text < cert.pem
 ...
 Subject: C=SE, CN=example.com, CN=*.example.com, O=erlang.org
 ...
The example Subject field has one C, two CN and one O part. It is only the CN
(Common Name) that is used by hostname verification. The two other (C and O) is
not used here even when they contain a domain name like the O part. The C and O
parts are defined elsewhere and meaningful only for other functions.
In the example the Presented IDs are example.com as well as hostnames matching
*.example.com. For example foo.example.com and bar.example.com both
matches but not foo.bar.example.com. The name erlang.org matches neither
since it is not a CN.
In case where the Presented IDs are fetched from the Subject certificate
field, the names may contain wildcard characters. The function handles this as
defined in
chapter 6.4.3 in RFC 6125.
There may only be one wildcard character and that is in the first label, for
example: *.example.com. This matches foo.example.com but neither
example.com nor foo.bar.example.com.
There may be label characters before or/and after the wildcard. For example:
a*d.example.com matches abcd.example.com and ad.example.com, but not
ab.cd.example.com.
In the previous example there is no indication of which protocols are expected.
So a client has no indication of whether it is a web server, an ldap server or
maybe a sip server it is connected to. There are fields in the certificate that
can indicate this. To be more exact, the rfc introduces the usage of the
X509v3 Subject Alternative Name in the X509v3 extensions field:
 $ openssl x509 -text < cert.pem
 ...
 X509v3 extensions:
 X509v3 Subject Alternative Name:
 DNS:kb.example.org, URI:https://www.example.org
 ...
Here kb.example.org serves any protocol while www.example.org presents a
secure web server.
The next example has both Subject and Subject Alternate Name present:
 $ openssl x509 -text < cert.pem
 ...
 Subject: C=SE, CN=example.com, CN=*.example.com, O=erlang.org
 ...
 X509v3 extensions:
 X509v3 Subject Alternative Name:
 DNS:kb.example.org, URI:https://www.example.org
 ...
The RFC states that if a certificate defines Reference IDs in a
Subject Alternate Name field, the Subject field MUST NOT be used for host
name checking, even if it contains valid CN names. Therefore only
kb.example.org and https://www.example.org matches. The match fails both for
example.com and foo.example.com because they are in the Subject field
which is not checked because the Subject Alternate Name field is present.

 Function call examples

Note
Other applications like ssl/tls or https might have options that are passed
down to the public_key:pkix_verify_hostname. You will probably not have to
call it directly

Suppose our client expects to connect to the web server https://www.example.net.
This URI is therefore the Reference IDs of the client. The call will be:
 public_key:pkix_verify_hostname(CertFromHost,
 [{uri_id, "https://www.example.net"}
]).
The call will return true or false depending on the check. The caller do not
need to handle the matching rules in the rfc. The matching will proceed as:
	If there is a Subject Alternate Name field, the {uri_id,string()} in the
function call will be compared to any {uniformResourceIdentifier,string()}
in the Certificate field. If the two strings() are equal (case insensitive),
there is a match. The same applies for any {dns_id,string()} in the call
which is compared with all {dNSName,string()} in the Certificate field.
	If there is NO Subject Alternate Name field, the Subject field will be
checked. All CN names will be compared to all hostnames extracted from
{uri_id,string()} and from {dns_id,string()}.

 Extending the search mechanism

The caller can use own extraction and matching rules. This is done with the two
options fqdn_fun and match_fun.

Hostname extraction
The fqdn_fun extracts hostnames (Fully Qualified Domain Names) from uri_id or
other ReferenceIDs that are not pre-defined in the public_key function. Suppose
you have some URI with a very special protocol-part: myspecial://example.com".
Since this a non-standard URI there will be no hostname extracted for matching
CN-names in the Subject.
To "teach" the function how to extract, you can give a fun which replaces the
default extraction function. The fqdn_fun takes one argument and returns
either a string/0 to be matched to each CN-name or the atom default which
will invoke the default fqdn extraction function. The return value undefined
removes the current URI from the fqdn extraction.
 ...
 Extract = fun({uri_id, "myspecial://"++HostName}) -> HostName;
 (_Else) -> default
 end,
 ...
 public_key:pkix_verify_hostname(CertFromHost, RefIDs,
 [{fqdn_fun, Extract}])
 ...

Re-defining the match operation
The default matching handles dns_id and uri_id. In an uri_id the value is tested
for equality with a value from the Subject Alternate Name. If some other kind
of matching is needed, use the match_fun option.
The match_fun takes two arguments and returns either true, false or
default. The value default will invoke the default match function.
 ...
 Match = fun({uri_id,"myspecial://"++A},
 {uniformResourceIdentifier,"myspecial://"++B}) ->
 my_match(A,B);
 (_RefID, _PresentedID) ->
 default
 end,
 ...
 public_key:pkix_verify_hostname(CertFromHost, RefIDs,
 [{match_fun, Match}]),
 ...
In case of a match operation between a ReferenceID and a CN value from the
Subject field, the first argument to the fun is the extracted hostname from
the ReferenceID, and the second argument is the tuple {cn, string()} taken
from the Subject field. That makes it possible to have separate matching rules
for Presented IDs from the Subject field and from the Subject Alternate Name
field.
The default matching transformes the ascii values in strings to lowercase before
comparing. The match_fun is however called without any transformation applied
to the strings. The reason is to enable the user to do unforeseen handling of
the strings where the original format is needed.

 "Pinning" a Certificate

The RFC 6125 defines pinning as:
"The act of establishing a cached name association between the application
service's certificate and one of the client's reference identifiers, despite
the fact that none of the presented identifiers matches the given reference
identifier. ..."

The purpose is to have a mechanism for a human to accept an otherwise faulty
Certificate. In for example a web browser, you could get a question like
Warning: you wanted to visit the site www.example.com, but the certificate is
for shop.example.com. Accept anyway (yes/no)?"

This could be accomplished with the option fail_callback which will be called
if the hostname verification fails:
 -include_lib("public_key/include/public_key.hrl"). % Record def
 ...
 Fail = fun(#'OTPCertificate'{}=C) ->
 case in_my_cache(C) orelse my_accept(C) of
 true ->
 enter_my_cache(C),
 true;
 false ->
 false
 end,
 ...
 public_key:pkix_verify_hostname(CertFromHost, RefIDs,
 [{fail_callback, Fail}]),
 ...

public_key

API module for public-key infrastructure.
Provides functions to handle public-key infrastructure, for details see
public_key application.
Note
All records used in this Reference Manual are generated from ASN.1
specifications and are documented in the User's Guide. See
Public-key Records.

Use the following include directive to get access to the records and constant
macros described here and in the User's Guide:
 -include_lib("public_key/include/public_key.hrl").

 Summary

 Types: Common

 OEBPS/dist/epub-N2MDDSYJ.js
(()=>{var g=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var l="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=